मराठी

Let A = [23-12]. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.

बेरीज

उत्तर

We have A2 = `[(2, 3),(-1, 2)] [(2, 3),(-1, 2)] = [(1, 12),(-4, 1)]`

– 4A = `[(-8, -12),(4, -8)]` and 7I = `[(7, 0),(0, 7)]`

Therefore, A2 – 4A + 7I = `[(1 - 8 + 7, 12 - 12 + 0),(-4 + 4 + 0, 1 - 8 + 7)]`

= `[(0, 0),(0, 0)]`

= O

⇒ A2 – 4A + 7I

Thus A3 = A.A2 = A(4A – 7I)

= 4(4A – 7I) – 7A

= 16A – 28I – 7A = 9A – 28I

and so A5 = A3A2

= (9A – 28I) (4A – 7I)

= 36A2 – 63A – 112A + 196I

= 36(4A – 7I) – 175A + 196I

= – 31A – 56I

= `-3"I"[(2, 3),(-1, 2)] -56[(1, 0),(0, 1)]`

= `[(-118, -93),(31, -118)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Solved Examples [पृष्ठ ५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Solved Examples | Q 8 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A is a square matrix, then AA is a


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Show that A′A and AA′ are both symmetric matrices for any matrix A.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×