Advertisements
Advertisements
प्रश्न
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
उत्तर
We have A2 = `[(2, 3),(-1, 2)] [(2, 3),(-1, 2)] = [(1, 12),(-4, 1)]`
– 4A = `[(-8, -12),(4, -8)]` and 7I = `[(7, 0),(0, 7)]`
Therefore, A2 – 4A + 7I = `[(1 - 8 + 7, 12 - 12 + 0),(-4 + 4 + 0, 1 - 8 + 7)]`
= `[(0, 0),(0, 0)]`
= O
⇒ A2 – 4A + 7I
Thus A3 = A.A2 = A(4A – 7I)
= 4(4A – 7I) – 7A
= 16A – 28I – 7A = 9A – 28I
and so A5 = A3A2
= (9A – 28I) (4A – 7I)
= 36A2 – 63A – 112A + 196I
= 36(4A – 7I) – 175A + 196I
= – 31A – 56I
= `-3"I"[(2, 3),(-1, 2)] -56[(1, 0),(0, 1)]`
= `[(-118, -93),(31, -118)]`
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
If A is a square matrix, then AA is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Show that A′A and AA′ are both symmetric matrices for any matrix A.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are symmetric matrices of the same order, then ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.