Advertisements
Advertisements
प्रश्न
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
उत्तर
A = `((5,a),(b,0))` given A is symmetric matrix
`A = A^T`
`[(5,a),(b,0)] = [(5,a),(b,0)]^T = [(5,b),(a,0)]`
`:. a = b`
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Show that all the diagonal elements of a skew symmetric matrix are zero.
If A is a square matrix, then AA is a
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.