मराठी

AA′ is always a symmetric matrix for any matrix A. - Mathematics

Advertisements
Advertisements

प्रश्न

AA′ is always a symmetric matrix for any matrix A.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Let P = AA'

P' = (AA')'

= (A')' . A'   .....[(AB)' = B'A']

= AA'

= P

So, P is symmetric matrix.

Hence, AA' is always a symmetric matrix.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 98 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


Sum of two skew-symmetric matrices is always ______ matrix.


If A and B are symmetric matrices, then AB – BA is a ______.


If A is symmetric matrix, then B′AB is ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×