Advertisements
Advertisements
प्रश्न
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
उत्तर
Let, A = `[(1,5),(-1,2)]`
`=> A' = [(1,-1),(5,2)]`
`A + A' = [(1,5),(-1,2)] + [(1,-1),(5,2)]`
`= [(1 + 1, 5 - 1),(-1 + 5, 2 + 2)]`
`= [(2,4),(4,4)]`
`therefore 1/2 (A + A') = 1/2 [(2,4),(4,4)]`
`= [(1,2),(2,2)]`
and, A - A' = `[(1,5),(-1,2)] - [(1,-1),(5,2)]`
`= [(1 - 1, 5 + 1),(-1 -5, 2 - 2)]`
`= [(0,6),(-6,0)]`
`therefore 1/2 (A - A') = 1/2 [(0,6),(-6,0)] = [(0,3),(-3,0)]`
`A = 1/2 (A + A') + 1/2 (A - A')`
`= [(1,2),(2,2)] + [(0,3),(-3,0)] = A`
Symmetric matrices + Skew symmetric matrices
APPEARS IN
संबंधित प्रश्न
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If a matrix A is both symmetric and skew-symmetric, then
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A is a skew-symmetric matrix, then A2 is a ______.
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A and B are symmetric matrices of the same order, then ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.