Advertisements
Advertisements
प्रश्न
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
उत्तर
Let, A = `[(1,5),(-1,2)]`
`=> A' = [(1,-1),(5,2)]`
`A + A' = [(1,5),(-1,2)] + [(1,-1),(5,2)]`
`= [(1 + 1, 5 - 1),(-1 + 5, 2 + 2)]`
`= [(2,4),(4,4)]`
`therefore 1/2 (A + A') = 1/2 [(2,4),(4,4)]`
`= [(1,2),(2,2)]`
and, A - A' = `[(1,5),(-1,2)] - [(1,-1),(5,2)]`
`= [(1 - 1, 5 + 1),(-1 -5, 2 - 2)]`
`= [(0,6),(-6,0)]`
`therefore 1/2 (A - A') = 1/2 [(0,6),(-6,0)] = [(0,3),(-3,0)]`
`A = 1/2 (A + A') + 1/2 (A - A')`
`= [(1,2),(2,2)] + [(0,3),(-3,0)] = A`
Symmetric matrices + Skew symmetric matrices
APPEARS IN
संबंधित प्रश्न
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Show that all the diagonal elements of a skew symmetric matrix are zero.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
If A is a square matrix, then AA is a
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A is symmetric matrix, then B′AB is ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.