हिंदी

Show that A′A and AA′ are both symmetric matrices for any matrix A. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that A′A and AA′ are both symmetric matrices for any matrix A.

योग

उत्तर

Let P = A'A

⇒ P' = (A'A)'

⇒ P' = A'(A')'   .....[(AB') = B'A']

⇒ P' = A'A   ......[∵ (A')' = A]

⇒ P' = P

Hence, A'A is a symmetric matrix.

Now, Let Q = AA'

⇒ Q' = (AA')' 

⇒ Q' = (A')A'   .....[(AB)' = B'A']

⇒ Q' = AA'  ......[∵ (A')' = A]

⇒ Q' = Q

Hence, AA' is also a symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 29 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Show that all the diagonal elements of a skew symmetric matrix are zero.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If A and B are matrices of the same order, then ABT − BAT is a 


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


AA′ is always a symmetric matrix for any matrix A.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×