हिंदी

If A = [sinαcosα-cosαsinα] then verify that A'A = I - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I

योग

उत्तर

Given, A =  `[(sin  alpha, cos  alpha),(-cos  alpha, sin  alpha)]`

So, A' = `[(sin  alpha, -cos  alpha),(cos  alpha, sin  alpha)]`

Now, A' A = `[(sin  alpha, -cos  alpha),(cos  alpha, sin  alpha)] xx [(sin  alpha, cos  alpha),(-cos  alpha, sin  alpha)]`

`= [(sin^2 alpha+ cos^2 alpha, sin  alpha   cos alpha - cos alpha sin alpha),(cos  alpha  sin  alpha - sin  alpha  cos  alpha, cos^2 alpha + sin^2 alpha)]`

`= [(1, 0),(0,1)] = I`          ... [Because `sin^2 alpha + cos^2 alpha = 1`]

Hence, it is proved that, A'A = I

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.3 [पृष्ठ ८९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.3 | Q 6.2 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If a matrix A is both symmetric and skew-symmetric, then


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are matrices of the same order, then ABT − BAT is a 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


______ matrix is both symmetric and skew-symmetric matrix.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A is symmetric matrix, then B′AB is ______.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×