Advertisements
Advertisements
प्रश्न
If A = [aij] is a skew-symmetric matrix of order n, then ______.
विकल्प
`a_(ij) = 1/(a_(ji)) ∀ i, j`
`a_(ij) ≠ 0 ∀ i, j`
`a_(ij) = 0, where i = j`
`a_(ij) ≠ 0 where i = j`
उत्तर
If A = [aij] is a skew-symmetric matrix of order n, then `underline(bb(a_(ij) = 0, where i = j))`.
Explanation:
In a skew-symmetric matrix, the (i, j)th element is negative of the (j, i)th element. Hence, the (i, i)th element = 0
APPEARS IN
संबंधित प्रश्न
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
If a matrix A is both symmetric and skew-symmetric, then
If A and B are symmetric matrices, then ABA is
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
Sum of two skew-symmetric matrices is always ______ matrix.
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
The diagonal elements of a skew symmetric matrix are ____________.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.