Advertisements
Advertisements
Question
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Options
`a_(ij) = 1/(a_(ji)) ∀ i, j`
`a_(ij) ≠ 0 ∀ i, j`
`a_(ij) = 0, where i = j`
`a_(ij) ≠ 0 where i = j`
Solution
If A = [aij] is a skew-symmetric matrix of order n, then `underline(bb(a_(ij) = 0, where i = j))`.
Explanation:
In a skew-symmetric matrix, the (i, j)th element is negative of the (j, i)th element. Hence, the (i, i)th element = 0
APPEARS IN
RELATED QUESTIONS
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
If the matrix A is both symmetric and skew symmetric, then ______.
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.