English

If A = [cosαsinα-sinαcosα], and A–1 = A′, find value of α - Mathematics

Advertisements
Advertisements

Question

If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α

Sum

Solution

Here, A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`

Given that: A–1 = A′

Pre-multiplying both sides by A

AA–1 = AA′

⇒ I = AA′   ......[∵ AA–1 = I]

⇒ `[(1, 0),(0, 1)] = [(cosalpha, sinalpha),(-sinalpha, cosalpha)] [(cosalpha, - sinalpha),(sinalpha, cosalpha)]`

⇒ `[(1, 0),(0, 1)] = [(cos^2alpha + sin^2alpha, -sinalpha cosalpha + sinalpha cosalpha),(-sinalpha cosalpha + cosalpha sinalpha, sin^2alpha + cos^2alpha)]`

⇒ `[(1, 0),(0, 1)] = [(1, 0),(0,  1)]`

Hence, it is true for all values of a.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise [Page 58]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Exercise | Q 44 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If the matrix A is both symmetric and skew symmetric, then ______.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A and B are symmetric matrices of the same order, then ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×