English

Find 12 (A + A') and 12 (A -A') When A=[0ab-a0c-b-c0] - Mathematics

Advertisements
Advertisements

Question

Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`

Sum

Solution

Given `A = [(0, a, b),(-a, 0, c),(-b, -c, 0)]`

So, A' = `[(0, - a, - b),(a, 0, - c),(b, c, 0)] = - [(0, a, b),(-a, 0, c),(-b, -c, 0)]` = - A

Now, `1/2` (A + A') = `1/2  ([(0, a, b),(-a, 0, c),(-b, -c, 0)] - [(0, a, b),(-a, 0, c),(-b, -c, 0)])`

`= [(0,0,0),(0,0,0),(0,0,0)]`

Then,  `1/2` (A - A') = `1/2  ([(0, a, b),(-a, 0,c),(-b, -c, 0)] + [(0, a, b),(-a, 0, c),(-b, -c, 0)])`

`= 1/2 [(0, 2a, 2b),(- 2a, 0, 2c),(- 2b, - 2c, 0)]`

`= [(0, a, b),(-a, 0, c),(-b, -c, 0)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.3 [Page 89]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.3 | Q 9 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If the matrix A is both symmetric and skew symmetric, then ______.


Show that all the diagonal elements of a skew symmetric matrix are zero.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A is symmetric matrix, then B′AB is ______.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×