Advertisements
Advertisements
Question
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
Solution
Given, `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` and B = `[(-4,1,-5),(1,2,0),(1,3,1)]`
then, (A + B) = `"A" = [(-1,2,3),(5,7,9),(-2,1,1)] + [(-4,1,-5),(1,2,0),(1,3,1)]`
`= [(-1 -4, 2 + 1, 3 - 5),(5 + 1, 7 + 2, 9 + 0),(-2 + 1, 1 + 3, 1 + 1)]`
`= [(-5, 3, -2),(6, 9,9),(-1,4,2)]`
Now, (A + B)' `= [(-5,6,-1),(3,9,4),(-2,9,2)]` ...(i)
A' = `[(-1,5,-2),(2,7,1),(3,9,1)]` and B' = `[(-4,1,1),(1,2,3),(-5,0,1)]`
then, A' + B' = `[(-1,5,-2),(2,7,1),(3,9,1)] + [(-4,1,1),(1,2,3),(-5,0,1)]`
= `[(-1 - 4, 5 + 1, -2 + 1), (2 + 1, 7 + 2, 1 + 3), (3 - 5, 9 + 0, 1 + 1)]`
`[(-5,6,-1),(3,9,4),(-2,9,2)]` ...(ii)
Equations (i) and (ii) prove that,
(A + B)' = A' + B'
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If the matrix A is both symmetric and skew symmetric, then ______.
Show that all the diagonal elements of a skew symmetric matrix are zero.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
Write a square matrix which is both symmetric as well as skew-symmetric.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are symmetric matrices, then ABA is
If A and B are matrices of the same order, then ABT − BAT is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.