Advertisements
Advertisements
Question
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
Options
Diagonal matrix
Symmetric matrix
Skew-symmetric matrix
Scalar matrix
Solution
The matrix `[(0, -5,8),(5, 0, 12),(-8, -12, 0)]` is a skew symmetric matrix.
Explanation:
Let A = `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
A' = `[(0, 5, -8),(-5, 0, -12),(8, 12, 0)]`
⇒ A' = `-[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` = – A
A' = – A
So A is a skew-symmetric matrix.
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Write a square matrix which is both symmetric as well as skew-symmetric.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are matrices of the same order, then ABT − BAT is a
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
AA′ is always a symmetric matrix for any matrix A.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A is any square matrix, then which of the following is skew-symmetric?
The diagonal elements of a skew symmetric matrix are ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?