Advertisements
Advertisements
Question
Write a square matrix which is both symmetric as well as skew-symmetric.
Solution
\[Let A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \]
\[ A^T = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
`"Since" A^T = A, A is a symmmetric matrix `
\[Now, \]
\[ - A = - \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \]
\[ \Rightarrow - A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
`"Since" A^T = - A, A is a skew - symmetric matrix . `
Thus,` A= [[0 0 ],[0 0]] `is an example of a matrix that is both symmetric and skew - symmetric.
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A is any square matrix, then which of the following is skew-symmetric?
The diagonal elements of a skew symmetric matrix are ____________.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.