English

If a = ⎡ ⎢ ⎣ 2 0 − 3 4 3 1 − 5 7 2 ⎤ ⎥ ⎦ is Expressed as the Sum of a Symmetric and Skew-symmetric Matrix, Then the Symmetric Matrix is - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  

Options

  • \[\begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]

  •  \[\begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\] 

  • \[\begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix}\]

  • \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]

MCQ

Solution

 \[\begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]

\[Here, \]

\[ A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]

\[ \Rightarrow A^T = \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]

\[Now, \]

\[A + A^T = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} + \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]

\[ \Rightarrow A + A^T = \begin{bmatrix}2 + 2 & 0 + 4 & - 3 - 5 \\ 4 + 0 & 3 + 3 & 1 + 7 \\ - 5 - 3 & 7 + 1 & 2 + 2\end{bmatrix}\]

\[ \Rightarrow A + A^T = \begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix}\]

\[A - A^T = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} - \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]

\[ \Rightarrow A - A^T = \begin{bmatrix}2 - 2 & 0 - 4 & - 3 + 5 \\ 4 - 0 & 3 - 3 & 1 - 7 \\ - 5 + 3 & 7 - 1 & 2 - 2\end{bmatrix}\]

\[ \Rightarrow A - A^T = \begin{bmatrix}0 & - 4 & 2 \\ 4 & 0 & - 6 \\ - 2 & 6 & 0\end{bmatrix}\]

\[\text{Let P }= \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix} = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]

\[Q = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\begin{bmatrix}0 & - 4 & 2 \\ 4 & 0 & - 6 \\ - 2 & 6 & 0\end{bmatrix} = \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}\]

\[Now, \]

\[ P^T = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}^T = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix} = P\]

\[ Q^T = \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}^T = \begin{bmatrix}0 & 2 & - 1 \\ - 2 & 0 & 3 \\ 1 & - 3 & 0\end{bmatrix} = - \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix} = - Q\]

Thus, P is symmetric and Q is skew - symmetric . 

\[ P + Q = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix} + \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}2 + 0 & 2 - 2 & - 4 + 1 \\ 2 + 2 & 3 + 0 & 4 - 3 \\ - 4 - 1 & 4 + 3 & 2 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} = A\]

Thus, we have expressed A is the sum of a symmetric and a skew - symmetric matrix . 

Hence, the symmetric matrix is`[[ 2           2        - 4 ],[ 2               3               4],[  - 4      4          2]]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 67]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 25 | Page 67

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A is symmetric matrix, then B′AB is ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


AA′ is always a symmetric matrix for any matrix A.


If A and B are symmetric matrices of the same order, then ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×