English

If a and B Are Symmetric Matrices, Then Aba is - Mathematics

Advertisements
Advertisements

Question

If A and B are symmetric matrices, then ABA is

Options

  • symmetric matrix

  • skew-symmetric matrix

  • diagonal matrix

  • scalar matrix

MCQ

Solution

 symmetric matrix

since A and B are symmetric matrices, we get

` A =A ^' and B =B^' `

\[\left( ABA \right)' = \left( BA \right)' \left( A \right)' \]

\[ = A'B'A'\]

\[ = ABA \left[ \because A =\text{ A' and B}  = B' \right]\]

\[Since      \left  ( ABA \right)' = ABA, ABA \text{ is a symmetric matrix} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 67]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 20 | Page 67

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


If the matrix A is both symmetric and skew symmetric, then ______.


Write a square matrix which is both symmetric as well as skew-symmetric.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are matrices of the same order, then ABT − BAT is a 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A is symmetric matrix, then B′AB is ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


The diagonal elements of a skew symmetric matrix are ____________.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×