मराठी

If a and B Are Symmetric Matrices, Then Aba is - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are symmetric matrices, then ABA is

पर्याय

  • symmetric matrix

  • skew-symmetric matrix

  • diagonal matrix

  • scalar matrix

MCQ

उत्तर

 symmetric matrix

since A and B are symmetric matrices, we get

` A =A ^' and B =B^' `

\[\left( ABA \right)' = \left( BA \right)' \left( A \right)' \]

\[ = A'B'A'\]

\[ = ABA \left[ \because A =\text{ A' and B}  = B' \right]\]

\[Since      \left  ( ABA \right)' = ABA, ABA \text{ is a symmetric matrix} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.7 | Q 20 | पृष्ठ ६७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


Show that all the diagonal elements of a skew symmetric matrix are zero.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A is a square matrix, then AA is a


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A is symmetric matrix, then B′AB is ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×