Advertisements
Advertisements
प्रश्न
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
पर्याय
diagonal matrix
symmetric matrix
skew-symmetric matrix
scalar matrix
उत्तर
Given:
\[A^T = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 & 5 & - 8 \\ - 5 & 0 & - 12 \\ 8 & 12 & 0\end{bmatrix}\]
\[ = - 1\begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\]
\[ = - A\]
Therefore, matrix A is skew-symmetric matrix.
Hence, the correct option is (c).
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If the matrix A is both symmetric and skew symmetric, then ______.
Show that all the diagonal elements of a skew symmetric matrix are zero.
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?