मराठी

If A and B are matrices of same order, then (AB′ – BA′) is a ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are matrices of same order, then (AB′ – BA′) is a ______.

पर्याय

  • Skew-symmetric matrix

  • Null matrix

  • Symmetric matrix

  • Unit matrix

MCQ
रिकाम्या जागा भरा

उत्तर

If A and B are matrices of same order, then (AB′ – BA′) is a skew-symmetric matrix.

Explanation:

Let P = (AB' – BA')

P' = (AB' – BA')'

= (AB')' – (BA')'

= (B')A' – (A')'B'   ......[∵ (AB)' = B'A']

= BA' – AB'

= – (AB' – BA')

= – P

P' = – P

So it is a skew symmetric matrix.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 63 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


If the matrix A is both symmetric and skew symmetric, then ______.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A and B are symmetric matrices, then ABA is


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


The diagonal elements of a skew symmetric matrix are ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×