मराठी

If the Matrix ((6,-"X"^2),(2"X"-15 , 10)) is Symmetric, Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.

बेरीज

उत्तर

Let A = `[(6,-"x"^2),(2"x" - 15, 10)]`


A' = `[(6,2"x"-15),(-"x"^2,10)]`

Since given matrix A is symmetric

∴ A = A'

`[(6,-"x"^2),(2"x" -15,10)] = [(6,2"x"-15),(-"x"^2,10)]`

Equating the corresponding terms of equal matrices, we obtain.

2x - 15 = - x2 

⇒ x2 + 2x - 15 = 0 

⇒ (x+5)(x-3)=0

⇒ x = -5 and x = 3 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


If a matrix A is both symmetric and skew-symmetric, then


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is symmetric matrix, then B′AB is ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×