Advertisements
Advertisements
प्रश्न
If a matrix A is both symmetric and skew-symmetric, then
पर्याय
A is a diagonal matrix
A is a zero matrix
A is a scalar matrix
A is a square matrix
उत्तर
A is a zero matrix
\[A = \left[ a_{ij} \right]\] be a matrix which is both symmetric and skew-symmetric.
If \[A = \left[ a_{ij} \right]\] is a symmetric matrix, then
\[a_{ij} = a_{ji}\] for all i, j ............(1)
If \[A = \left[ a_{ij} \right]\] is a skew-symmetric matrix, then
\[a_{ij} = - a_{ji}\]
\[\Rightarrow a_{ji} = - a_{ij}\] for all i,j ............(2)
From eqs. (1) and (2), we have
\[a_{ij} = - a_{ij} \]
\[ \Rightarrow a_{ij} + a_{ij} = 0 \]
\[ \Rightarrow 2 a_{ij} = 0 \]
\[ \Rightarrow a_{ij} = 0 \]
\[ \therefore A = \left[ a_{ij} \right] \text{is a zero matrix or null matrix} . \]
\[\]
APPEARS IN
संबंधित प्रश्न
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is symmetric matrix, then B′AB is ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
AA′ is always a symmetric matrix for any matrix A.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.