मराठी

If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Let A, B and C be three matrices of the same order.

Given that A' = A, B' = B and C' = C

Let P = A + B + C

⇒ P' = (A + B + C)'

= A' + B' + C'

= A + B + C

= P

So, A + B + C is also a symmetric matrix.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 94 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


If A is a square matrix, then AA is a


If A and B are symmetric matrices, then ABA is


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is symmetric matrix, then B′AB is ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×