Advertisements
Advertisements
प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
उत्तर
We have
`A=[(0,2b,-2),(3,1,2),(3a,3,-1)]`
`A'=[(0,3,3a),(2b,1,3),(-2,3,-1)]`
We know that a matrix is symmetric if A = A'.
Thus,
`[(0,2b,-2),(3,1,3),(3a,3,-1)]=[(0,3,3a),(2b,1,3),(-2,3,-1)]`
Now,
2b=3
`=>b=3/2`
Also,
3a=−2
`=>a=(-2)/3`
Therefore,
a=`(-2)/3`and b = `3/2`
APPEARS IN
संबंधित प्रश्न
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A is a square matrix, then AA is a
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is symmetric matrix, then B′AB is ______.
If A is any square matrix, then which of the following is skew-symmetric?
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.