मराठी

Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.

पर्याय

  • 512

  • 64

  • 8

  • 4

MCQ
रिकाम्या जागा भरा

उत्तर

Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is 64.

Explanation:

Let us form a symmetric matrix of 3 × 3 order.

`[(a, b, c),(b, d, e),(c, e, f)]`

To fill a, b, c, d, e, f, we have 2 choices either 1 or – 1.

So, number of symmetric matrices will be 26 = 64.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Show that all the diagonal elements of a skew symmetric matrix are zero.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


Write a square matrix which is both symmetric as well as skew-symmetric.


If A is a square matrix, then AA is a


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×