Advertisements
Advertisements
प्रश्न
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
उत्तर
Given, `"A" = [(0), (1),(2)] , "and B" = [(1 , 5, 7)]`
So, Ab = `[(0), (1),(2)] xx [(1 , 5, 7)]`
`= [(0 xx 1, 0 xx 5, 0 xx 7),(1 xx 1, 1 xx 5, 1 xx 7),(2 xx 1, 2 xx 5, 2 xx 7)]`
`= [(0,0,0), (1, 5,7),(2, 10,14)]`
Now, (AB)' = `[(0,1,2),(0,5,10),(0,7,14)]` ...(i)
So, A' = `[(0,1,2)]` and B' = `[(1),(5),(7)]`
Now, B'A' = `[(1),(5),(7)] xx [(0,1,2)]`
`= [(1 xx 0, 1 xx 1, 1 xx 2), (5 xx 0, 5 xx 1, 5 xx 2), (7 xx 0, 7 xx 1, 7 xx 2)]`
`= [(0,1,2),(0,5,10),(0,7,14)]` ...(ii)
Equations (i) and (ii) prove that,
∴(AB)' = B'A'
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If the matrix A is both symmetric and skew symmetric, then ______.
Write a square matrix which is both symmetric as well as skew-symmetric.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
If a matrix A is both symmetric and skew-symmetric, then
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A is any square matrix, then which of the following is skew-symmetric?
The diagonal elements of a skew symmetric matrix are ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.