Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
पर्याय
\[\begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]
\[\begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]
\[\begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix}\]
\[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
उत्तर
\[\begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]
\[Here, \]
\[ A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]
\[ \Rightarrow A^T = \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]
\[Now, \]
\[A + A^T = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} + \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]
\[ \Rightarrow A + A^T = \begin{bmatrix}2 + 2 & 0 + 4 & - 3 - 5 \\ 4 + 0 & 3 + 3 & 1 + 7 \\ - 5 - 3 & 7 + 1 & 2 + 2\end{bmatrix}\]
\[ \Rightarrow A + A^T = \begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix}\]
\[A - A^T = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} - \begin{bmatrix}2 & 4 & - 5 \\ 0 & 3 & 7 \\ - 3 & 1 & 2\end{bmatrix}\]
\[ \Rightarrow A - A^T = \begin{bmatrix}2 - 2 & 0 - 4 & - 3 + 5 \\ 4 - 0 & 3 - 3 & 1 - 7 \\ - 5 + 3 & 7 - 1 & 2 - 2\end{bmatrix}\]
\[ \Rightarrow A - A^T = \begin{bmatrix}0 & - 4 & 2 \\ 4 & 0 & - 6 \\ - 2 & 6 & 0\end{bmatrix}\]
\[\text{Let P }= \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\begin{bmatrix}4 & 4 & - 8 \\ 4 & 6 & 8 \\ - 8 & 8 & 4\end{bmatrix} = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}\]
\[Q = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\begin{bmatrix}0 & - 4 & 2 \\ 4 & 0 & - 6 \\ - 2 & 6 & 0\end{bmatrix} = \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}\]
\[Now, \]
\[ P^T = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix}^T = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix} = P\]
\[ Q^T = \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}^T = \begin{bmatrix}0 & 2 & - 1 \\ - 2 & 0 & 3 \\ 1 & - 3 & 0\end{bmatrix} = - \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix} = - Q\]
Thus, P is symmetric and Q is skew - symmetric .
\[ P + Q = \begin{bmatrix}2 & 2 & - 4 \\ 2 & 3 & 4 \\ - 4 & 4 & 2\end{bmatrix} + \begin{bmatrix}0 & - 2 & 1 \\ 2 & 0 & - 3 \\ - 1 & 3 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}2 + 0 & 2 - 2 & - 4 + 1 \\ 2 + 2 & 3 + 0 & 4 - 3 \\ - 4 - 1 & 4 + 3 & 2 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix} = A\]
Thus, we have expressed A is the sum of a symmetric and a skew - symmetric matrix .
Hence, the symmetric matrix is`[[ 2 2 - 4 ],[ 2 3 4],[ - 4 4 2]]`
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If the matrix A is both symmetric and skew symmetric, then ______.
Write a square matrix which is both symmetric as well as skew-symmetric.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.