Advertisements
Advertisements
प्रश्न
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
उत्तर
Given, `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` and B = `[(-4,1,-5),(1,2,0),(1,3,1)]`
Then, (A - B) = `"A" = [(-1,2,3),(5,7,9),(-2,1,1)] - [(-4,1,-5),(1,2,0),(1,3,1)]`
`= [(-1 + 4, 2 - 1, 3 + 5),(5 - 1, 7 - 2, 9 - 0), (-2 - 1, 1 - 3, 1 - 1)] = [(3,1,8),(4,5,9),(-3, -2, 0)]`
Then, (A - B)' = `[(3,1,8),(4,5,9),(-3, -2, 0)] = [(3,4,-3),(1,5,-2),(8, 9, 0)] ` ...(i)
We know that, A' = `[(-1, 5, -2), (2, 7,1),(3, 9,1)]` तथा B' = `[(-4,1,1),(1,2,3),(-5,0,1)]`
A' - B' = `[(-1, 5, -2), (2, 7,1),(3, 9,1)] - [(-4,1,1),(1,2,3),(-5,0,1)]`
`= [(-1 + 4, 5 - 1, -2 - 1),(2 - 1, 7 - 2, 1 - 3),(3 + 5, 9 - 0, 1 - 1)]`
`= [(3,4,-3),(1,5,-2),(8,9,0)]` ... (ii)
Equations (i) and (ii) prove that,
(A - B)' = A' - B'
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If A and B are matrices of the same order, then ABT − BAT is a
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A is any square matrix, then which of the following is skew-symmetric?
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?