Advertisements
Advertisements
प्रश्न
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
उत्तर
Given that A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`
A + B = `[(0, 1),(1, 1)] + [(0, -1),(1, 0)]`
⇒ A + B = `[(0 + 0, 1 - 1),(1 + 1, 1 + 0)]`
⇒ A + B = `[(0, 0),(2, 1)]`
A – B = `[(0, 1),(1, 1)] - [(0, -1),(1, 0)]`
⇒ A – B = `[(0 - 0, 1 + 1),(1 - 1, 1 - 0)]`
⇒ A – B = `[(0, 2),(0, 1)]`
∴ `("A" + "B") * ("A" – "B") = [(0, 0),(2, 1)],[(0, 2),(0, 1)]`
= `[(0 + 0, 0 + 0),(0 + 0, 4 + 1)]`
= `[(0, 0),(0, 5)]`
Now, R.H.S. = A2 – B2
= `"A" * "A" – "B" * "B"`
= `[(0, 1),(1, 1)][(0, 1),(1, 1)] - [(0,-1),(1, 0)][(0, -1),(1, 0)]`
= `[(0 +1,0 +1),(0 + 1, 1 + 1)] - [(0 - 1, 0 + 0),(0 + 0, -1 + 0)]`
= `[(1, 1),(1, 2)] - [(-1, 0),(0, -1)]`
= `[(1 + 1, 1 -0),(1 -0, 2 + 1)]`
= `[(2, 1),(1, 3)]`
Hence, `[(0, 0),(0, 5)] ≠ [(2, 10),(1, 3)]`
Hence, (A + B) . (A – B) ≠ A2 – B2
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A is a square matrix, then AA is a
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A is symmetric matrix, then B′AB is ______.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.