मराठी

If A = [0111] and B = [0-110], show that (A + B)(A – B) ≠ A2 – B2 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 

बेरीज

उत्तर

Given that A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`

A + B = `[(0, 1),(1, 1)] + [(0, -1),(1, 0)]`

⇒  A + B = `[(0 + 0, 1 - 1),(1 + 1, 1 + 0)]`

⇒ A + B = `[(0, 0),(2, 1)]`

A – B = `[(0, 1),(1, 1)] - [(0, -1),(1, 0)]`

⇒ A – B = `[(0 - 0, 1 + 1),(1 - 1, 1 - 0)]`

⇒ A – B = `[(0, 2),(0, 1)]`

∴ `("A" + "B") * ("A" – "B") = [(0, 0),(2, 1)],[(0, 2),(0, 1)]`

= `[(0 + 0, 0 + 0),(0 + 0, 4 + 1)]`

= `[(0, 0),(0, 5)]`

Now, R.H.S. = A2 – B2

= `"A" * "A"  –  "B" * "B"`

= `[(0, 1),(1, 1)][(0, 1),(1, 1)] - [(0,-1),(1, 0)][(0, -1),(1, 0)]`

= `[(0 +1,0 +1),(0 + 1, 1 + 1)] - [(0 - 1, 0 + 0),(0 + 0, -1 + 0)]`

= `[(1, 1),(1, 2)] - [(-1, 0),(0, -1)]`

= `[(1 + 1, 1 -0),(1 -0, 2 + 1)]`

= `[(2, 1),(1, 3)]`

Hence, `[(0, 0),(0, 5)] ≠ [(2, 10),(1, 3)]`

Hence, (A + B) . (A – B) ≠ A2 – B 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५३]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If A is a square matrix, then AA is a


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A is symmetric matrix, then B′AB is ______.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×