मराठी

If A = [aij] is a skew-symmetric matrix of order n, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = [aij] is a skew-symmetric matrix of order n, then ______.

पर्याय

  • `a_(ij) = 1/(a_(ji)) ∀  i, j`

  • `a_(ij) ≠ 0  ∀  i, j`

  • `a_(ij) = 0, where  i = j`

  • `a_(ij) ≠ 0  where  i = j`

MCQ
रिकाम्या जागा भरा

उत्तर

If A = [aij] is a skew-symmetric matrix of order n, then `underline(bb(a_(ij) = 0, where  i = j))`.

Explanation:

In a skew-symmetric matrix, the (i, j)th element is negative of the (j, i)th element. Hence, the (i, i)th element = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Sample

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A is a square matrix, then AA is a


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A is any square matrix, then which of the following is skew-symmetric?


The diagonal elements of a skew symmetric matrix are ____________.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×