Advertisements
Advertisements
प्रश्न
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
उत्तर
We have, A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]`
We know that A = `("A" + "A'")/2 + ("A" - "A'")/2`
Where `("A" + "A'")/2` is symmetric and `("A" - "A'")/2` is skew-symmetric
∴ A' = `[(2, 1, 4),(3, -1, 1),(1, 2, 2)]`
Now, `("A" + "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] + [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`
= `1/2 [(4, 4, 5),(4, -2, 3),(5, 3, 4)]`
= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)]`
And `("A" - "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] - [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`
= `1/2 [(0, 2, -3),(-2, 0, 1),(3, -1, 0)]`
= `[(0,1, (-3)/2),(-1, 0, 1/2),(3/2, (-1)/2, 0)]`
∴ A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]`
= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)] + [(0, 1, (-3)/2),(-1, 0, 1/2),(3/2, 1/2, 0)]`
APPEARS IN
संबंधित प्रश्न
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A and B are symmetric matrices of the same order, then ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?