हिंदी

Express the matrix [2311-12412] as the sum of a symmetric and a skew-symmetric matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.

योग

उत्तर

We have, A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` 

We know that A = `("A" + "A'")/2 + ("A" - "A'")/2`

Where `("A" + "A'")/2` is symmetric and `("A" - "A'")/2` is skew-symmetric

∴ A' = `[(2, 1, 4),(3, -1, 1),(1, 2, 2)]`

Now, `("A" + "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] + [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`

= `1/2 [(4, 4, 5),(4, -2, 3),(5, 3, 4)]`

= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)]`

And `("A" - "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] - [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`

= `1/2 [(0, 2, -3),(-2, 0, 1),(3, -1, 0)]`

= `[(0,1, (-3)/2),(-1, 0, 1/2),(3/2, (-1)/2, 0)]`

∴ A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]`

= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)] + [(0, 1, (-3)/2),(-1, 0, 1/2),(3/2, 1/2, 0)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 52 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A is a skew symmetric matric of order 3, then prove that det A  = 0


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


If the matrix A is both symmetric and skew symmetric, then ______.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are matrices of the same order, then ABT − BAT is a 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A, B are Symmetric matrices of same order, then AB – BA is a


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×