Advertisements
Advertisements
प्रश्न
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
उत्तर
We have, A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]`
We know that A = `("A" + "A'")/2 + ("A" - "A'")/2`
Where `("A" + "A'")/2` is symmetric and `("A" - "A'")/2` is skew-symmetric
∴ A' = `[(2, 1, 4),(3, -1, 1),(1, 2, 2)]`
Now, `("A" + "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] + [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`
= `1/2 [(4, 4, 5),(4, -2, 3),(5, 3, 4)]`
= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)]`
And `("A" - "A'")/2 = ([(2, 3, 1),(1, -1, 2),(4, 1, 2)] - [(2, 1, 4),(3, -1, 1),(1, 2, 2)])/2`
= `1/2 [(0, 2, -3),(-2, 0, 1),(3, -1, 0)]`
= `[(0,1, (-3)/2),(-1, 0, 1/2),(3/2, (-1)/2, 0)]`
∴ A = `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]`
= `[(2, 2, 5/2),(2, -1, 3/2),(5/2, 3/2, 2)] + [(0, 1, (-3)/2),(-1, 0, 1/2),(3/2, 1/2, 0)]`
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
If the matrix A is both symmetric and skew symmetric, then ______.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are symmetric matrices, then ABA is
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If A and B are matrices of the same order, then ABT − BAT is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A and B are symmetric matrices of the same order, then ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A, B are Symmetric matrices of same order, then AB – BA is a
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.