हिंदी

If the matrix A is both symmetric and skew symmetric, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If the matrix A is both symmetric and skew symmetric, then ______.

विकल्प

  • A is a diagonal matrix

  • A is a zero matrix

  • A is a square matrix

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

If the matrix A is both symmetric and skew symmetric, then A is a zero matrix.

Explanation:

In symmetric matrices, aij = aji          …(1)

In skew symmetric matrices, aij = -aji             …(2)

Symmetric and skew-symmetric matrices must have both properties (1) and (2). Combining them,

2aij = aij - aji = 0

⇒ aij = 0

aij = aji 0

∴ The square matrix will be a zero matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.5 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.5 | Q 14 | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If A is a skew symmetric matric of order 3, then prove that det A  = 0


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×