हिंदी

If A = [αβγ-α] is such that A2 = I then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.

विकल्प

  • 1 + α² + βγ = 0

  • 1 – α² + βγ = 0

  • 1 – α² – βγ = 0

  • 1 + α² – βγ = 0

MCQ
रिक्त स्थान भरें

उत्तर

If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then 1 – α² – βγ = 0.

Explanation:

A = `[(alpha, beta), (ϒ, -alpha)]`

`"A"^2 = "A" * "A"[(alpha, beta), (ϒ, -alpha)][(alpha, beta), (ϒ, -alpha)]`

= `[(alpha^2 + betaϒ, alphabeta - alphabeta), (alphaϒ - alphaϒ, betaϒ + alpha^2)] = [(1, 0), (0, 1)]`

Now, A2 = I

⇒ `[(alpha^2 + betaϒ,0), (0, betaϒ + alpha^2)] = [(1, 0), (0, 1)]`

α2 + βγ = 1 or 1 – α2 – βγ = 0

Accordingly, option (1 - α2 - βγ = 0) is correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.5 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.5 | Q 13 | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


AB = AC ⇒ B = C for any three matrices of same order.


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


The matrix A `=[(0,1),(1,0)]` is a ____________.


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


The number of all possible matrices of order 3/3, with each entry 0 or 1 is


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.


The minimum number of zeros in an upper triangular matrix will be ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


If A is a square matrix of order 3, then |2A| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×