हिंदी

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y. 2X + 3Y = [2340], 3Y + 2Y = [-221-5] - Mathematics

Advertisements
Advertisements

प्रश्न

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`

योग

उत्तर

Given that,

2X + 3Y = `[(2, 3),(4, 0)]`   ......(1)

3Y + 2Y = `[(-2, 2),(1, -5)]`   ......(2)

Multiplying equation (1) by 3 and equaion (2) by 2, we get,

3[2X + 3Y] = `3[(2, 3),(4, 0)]`

⇒ 6X + 9Y = `[(6, 9),(12, 0)]`  ....(3)

2[3X + 2Y] = `2[(-2, 2),(1, -5)]`

⇒ 6X + 4Y = `[(-4, 4),(2, -10)]`  .....(4)

On subtracting eq. (4) from eq. (3) we get

5Y = `[(6 + 4, 9 - 4),(12 - 2, 0 + 10)]`

5Y = `[(10, 5),(10, 10)]`

⇒ Y = `[(2, 1),(2, 2)]` 

Now, putting the value of Y in equation (1) we get,

`2"X" + 3 [(2, 1),(2, 2)] = [(2, 3),(4, 0)]`

⇒ `2"X" + [(6, 3),(6, 60)] = [(2, 3),(4, 0)]`

⇒ 2X = `[(2, 3),(4, 0)] - [(6, 3),(6, 6)]`

⇒ 2X = `[(2 - 6, 3 - 3),(4 - 6, 0 - 6)]`

⇒ 2X = `[(-4,0),(-2, -6)]`

⇒  = `1/2 [(-4, 0),(-2, -6)]`

⇒ X = `[(-2, 0),(-1, -3)]`

Hence, X = `[(-2, 0),(-1, -3)]` and Y = `[(2, 1),(2, 2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 19 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


Find the value of x, y, and z from the following equation:

`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


Show by an example that for A ≠ O, B ≠ O, AB = O


Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′? 


If A is a square matrix, then A – A’ is a ____________.


A matrix is said to be a row matrix, if it has


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If A is a square matrix of order 3, then |2A| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×