हिंदी

If for Any 2 X 2 Square Matrix A, A(Adj A) (8,0), (0,8) Then Write the Value of a - Mathematics

Advertisements
Advertisements

प्रश्न

If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|

योग

उत्तर १

Given A (adj A = `[(8,0),(0,8)]`

we know that A(adj A) = |A| - I

|A|.I = `8[(1,0),(0,1)]`

`=> |A| = 8`

shaalaa.com

उत्तर २

It is given that

A(adj A) = `[(8,0),(0,8)]`

⇒ A(adj A) = `8[(1,0),(0,1)]`

⇒ A(adj A) = 8I2          .....(1)

We know that for any square matrix A of order 2, we have

A(adj A) = |A|I2          .....(2)

From (1) and (2), we have

|A|=8

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


For the non singular matrix A, (A′)–1 = (A–1)′.


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


The number of all possible matrices of order 3/3, with each entry 0 or 1 is


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×