Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
विकल्प
identity matrix
scalar matrix
null matrix
diagonal matrix
उत्तर
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is scalar matrix.
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
The minimum number of zeros in an upper triangular matrix will be ______.
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.