Advertisements
Advertisements
प्रश्न
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
उत्तर
Since A, B and C are all square matrices or order 2 and CD − AB is well defined, D must be a square matrix of order 2.
Let D = `[(a,b),(c,d)]`
Then CD − AB = O gives,
`[(2,5),(3,8)][(a,b),(c,d)] - [(2,-1),(3,4)][(5,2),(7,4)] = O`
`=>[(2a + 5c,2b+5a),(3a+8c, 3b+8a)]-[(3,0),(43,22)] = [(0,0),(0,0)]`
`=>[(2a + 5c - 3, 2b + 5d),(3a + 8c - 43, 3b + 8d - 22)] = [(0,0),(0,0)]`
By equality of matrices we get,
2a + 5c − 3 = 0 ...(1)
3a + 8c − 43 = 0 ...(2)
2b + 5d = 0 ...(3)
3b + 8d − 22 = 0 ...(4)
By solving (1) and (2) we get a = −191 and c = 77.
Similarly, on solving (3) and (4) we get b = - 110 and d = 44.
Therefore,
`D = [(a,b),(c,d)] = [(-191,-110),(77,44)]`
APPEARS IN
संबंधित प्रश्न
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Select the correct option from the given alternatives:
Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______
Select the correct option from the given alternatives:
If A and B are square matrices of equal order, then which one is correct among the following?
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a column matrix if it has
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
The number of all possible matrices of order 3/3, with each entry 0 or 1 is
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.