Advertisements
Advertisements
प्रश्न
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
उत्तर
`A = [(0, -tan alpha/2), (tan alpha/2, 0)], I = [(1,0),(0,1)]`
`I + A = [(1,0),(0,1)] + [(0, -tan alpha/2), (tan alpha/2, 0)]`
`= [(1, -tan alpha/2), (tan alpha/2, 1)]`
`(I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)] = ([(1,0),(0,1)] - [(0, -tan alpha/2), (tan alpha/2, 0)]) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
`= [(1, tan alpha/2), (-tan alpha/2, 1)] [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
`= [(1, tan alpha/2), (-tan alpha/2, 1)]` `[((1 - tan^2 alpha/2)/(1 + tan^2 alpha/2)(-2 tan alpha/2)/(1+ tan^2 alpha/2)),((-2 tan alpha/2)/(1+ tan^2 alpha/2)(1 - tan^2 alpha/2)/(1 + tan^2 alpha/2))]`
`= [((1 + tan^2 alpha/2)/(1 + tan^2 alpha/2)(-tan alpha/2 - tan^3 alpha/2)/(1+ tan^2 alpha/2)),((tan alpha/2 + tan^3 alpha/2)/(1+ tan^2 alpha/2)(1 + tan^2 alpha/2)/(1 + tan^2 alpha/2))]`
`= [(1, -tan alpha/2),(tan alpha/2, 1)]`
Hence, `I + A = (I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
APPEARS IN
संबंधित प्रश्न
If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix
For the non singular matrix A, (A′)–1 = (A–1)′.
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]` is a ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A matrix is said to be a column matrix if it has
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
If all the elements are zero, then matrix is said to be
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
The minimum number of zeros in an upper triangular matrix will be ______.
How many matrices can be obtained by using one or more numbers from four given numbers?
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.