Advertisements
Advertisements
प्रश्न
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
उत्तर
\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix} \]
\[ A^T = \begin{bmatrix}2 & 4 \\ 3 & 5\end{bmatrix}\]
\[Now, \]
\[\left( A - A^T \right) = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix} - \begin{bmatrix}2 & 4 \\ 3 & 5\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = \begin{bmatrix}2 - 2 & 3 - 4 \\ 4 - 3 & 5 - 5\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( A - A^T \right)^T = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix}^T \]
\[ \Rightarrow \left( A - A^T \right)^T = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right)^T = - \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = - \left( A - A^T \right)^T \left[ \text{Using eq} . \left( 1 \right) \right]\]
\[Thus, \left( A - A^T \right) \text{is a skew - symmetric matrix} .\]
APPEARS IN
संबंधित प्रश्न
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Answer the following question:
If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix
Choose the correct alternative:
If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______
State whether the following statement is True or False:
If A is non singular, then |A| = 0
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If A is a square matrix, then A – A’ is a ____________.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
A matrix is said to be a column matrix if it has
A = `[a_(ij)]_(m xx n)` is a square matrix, if
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.