मराठी

Prove that a − at is a Skew-symmetric Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.

बेरीज

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix} \]
\[ A^T = \begin{bmatrix}2 & 4 \\ 3 & 5\end{bmatrix}\]
\[Now, \]
\[\left( A - A^T \right) = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix} - \begin{bmatrix}2 & 4 \\ 3 & 5\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = \begin{bmatrix}2 - 2 & 3 - 4 \\ 4 - 3 & 5 - 5\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( A - A^T \right)^T = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix}^T \]
\[ \Rightarrow \left( A - A^T \right)^T = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right)^T = - \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right) = - \left( A - A^T \right)^T \left[ \text{Using eq} . \left( 1 \right) \right]\]
\[Thus, \left( A - A^T \right) \text{is a skew - symmetric matrix} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.5 [पृष्ठ ६०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.5 | Q 1 | पृष्ठ ६०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1


Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


if  `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Select the correct option from the given alternatives:

Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


Choose the correct alternative:

If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


For the non singular matrix A, (A′)–1 = (A–1)′.


AB = AC ⇒ B = C for any three matrices of same order.


Show by an example that for A ≠ O, B ≠ O, AB = O


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A matrix is said to be a column matrix if it has


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


If all the elements are zero, then matrix is said to be


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×