Advertisements
Advertisements
प्रश्न
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
उत्तर
A = `[(5, 1, -1),(3, 2, 0)]`
∴ AT = `[(5, 3),(1, 2),(-1, 0)]`
∴ (AT)T = `[(5, 1, -1),(3, 2, 0)]`
APPEARS IN
संबंधित प्रश्न
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
Select the correct option from the given alternatives:
Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
For the non singular matrix A, (A′)–1 = (A–1)′.
Show by an example that for A ≠ O, B ≠ O, AB = O
If A is a square matrix, then A – A’ is a ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
A = `[a_(ij)]_(m xx n)` is a square matrix, if
How many matrices can be obtained by using one or more numbers from four given numbers?
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.