मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

If A = [10-17], find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.

बेरीज

उत्तर

A2 = A · A = `[(1, 0),(-1, 7)] [(1, 0),(-1, 7)]`

= `[(1 - 0, 0 + 0),(-1 - 7, 0 + 49)]`

= `[(1, 0),(-8, 49)]`

∴ A2 – 8A – kI = `[(1, 0),(-8, 49)] - 8 [(1, 0),(-1, 7)] -"k"[(1, 0),(0, 1)]`

= `[(1, 0),(-8, 49)] - [(8, 0),(-8, 56)] - [("k", 0),(0, "k")]`

= `[(1 - 8 - "k", 0 - 0 - 0),(-8 + 8 - 0, 49 - 56 - "k")]`

= `[(-7 - "k", 0),(0, -7 - "k")]`

But A2 – 8A – kI = 0

∴ `[(-7 - "k", 0),(0, -7 - "k")] = [(0, 0),(0, 0)]`

∴ –7 – k = 0

∴ k = – 7.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Exercise 4.6 [पृष्ठ ९५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Exercise 4.6 | Q 13 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Find the value of x, y, and z from the following equation:

`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`


Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`


Identify the following matrix is singular or non-singular?

`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


AB = AC ⇒ B = C for any three matrices of same order.


Show by an example that for A ≠ O, B ≠ O, AB = O


A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.


If A is a square matrix, then A – A’ is a ____________.


If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


If a matrix A is both symmetric and skew-symmetric, then ____________.


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


The minimum number of zeros in an upper triangular matrix will be ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.


A matrix which is both symmetric and skew symmetric matrix is a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×