मराठी

Given Two Matrices a and B `A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]` Find Ab and Use this Result to Solve the Following System of Equations: X - 2y + 3z = 6, X + 4x + Z = 12, - Mathematics

Advertisements
Advertisements

प्रश्न

Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1

उत्तर

`AB = [(1,-2,3),(1,4,1),(1,-3,2)][(11,-5,-14),(-1,-1,2),(-7,1,6)]`

`AB = [(11+3-21,-5+2+3,-14-4+18),(11-4-7,-5-4+1, -14+8+6),(11+3-14, -5+3+2,-14-6+12)]`

`AB = [(-8,0,0),(0,-8,0),(0,0,-8)] = - 8I`

`-1/8 AB = I`

`A(-1/8 B) = I`

`A^(-1) = -1/8 B`

Let AX= C

`[(1,-2,3),(1,4,1),(1,-3,2)][(x),(y),(z)] = [(6),(12),(1)]`

AX = C

`X= A^(-1)C`

we know that `A^(-1) = (-1)/8 B`

`[(x),(y),(z)] = (-1)/8 [(11,-5,-14),(-1,-1,2),(-7,1,6)] [(6),(12),(1)]`

`[(x),(y),(z)] = (-1)/8[(66,-60,-14),(-6,-12,+2),(-42,+12,+6)]`

`[(x),(y),(z)] =(-1)/8 [(8),(-16),(-24)]`

`[(x),(y),(z)] = [(1),(2),(3)]`

x = 1

y = 2

z = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


State whether the following statement is True or False:

If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


AB = AC ⇒ B = C for any three matrices of same order.


If A is a square matrix, then A – A’ is a ____________.


For any square matrix A, AAT is a ____________.


If a matrix A is both symmetric and skew-symmetric, then ____________.


The matrix A `=[(0,1),(1,0)]` is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


If all the elements are zero, then matrix is said to be


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


A matrix which is both symmetric and skew symmetric matrix is a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×