Advertisements
Advertisements
प्रश्न
AB = AC ⇒ B = C for any three matrices of same order.
पर्याय
True
False
उत्तर
This statement is False.
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
Find the value of a, b, c, and d from the equation:
`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
State whether the following statement is True or False:
If A is non singular, then |A| = 0
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Show by an example that for A ≠ O, B ≠ O, AB = O
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
For any square matrix A, AAT is a ____________.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
How many matrices can be obtained by using one or more numbers from four given numbers?
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.