मराठी

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.

पर्याय

  • A

  • I – A

  • I

  • 3A

MCQ
रिकाम्या जागा भरा

उत्तर

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to I.

Explanation:

Given : A2 = A

∵ A3 = A2. A

= A.A = A2 = A

∴ (I + A)3 - 7A = I3 +3i2 A + 3IA2 + A3 - 7A

= I3 + 3IA + 3IA2 + A3 - 7A

= I + 3A + 3A2 + A3 - 7A

= I + 3A + 3A + A2 . A - 7A

= I + 3A + 3A + A - 7A

= 7A - 7A + I

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise 3.5 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 3 Matrices
Exercise 3.5 | Q 15 | पृष्ठ १०१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O


Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


State whether the following statement is True or False:

If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


For the non singular matrix A, (A′)–1 = (A–1)′.


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


A matrix is said to be a column matrix if it has


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If A is a square matrix of order 3, then |2A| is equal to ______.


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


A matrix which is both symmetric and skew symmetric matrix is a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×