English

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.

Options

  • A

  • I – A

  • I

  • 3A

MCQ
Fill in the Blanks

Solution

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to I.

Explanation:

Given : A2 = A

∵ A3 = A2. A

= A.A = A2 = A

∴ (I + A)3 - 7A = I3 +3i2 A + 3IA2 + A3 - 7A

= I3 + 3IA + 3IA2 + A3 - 7A

= I + 3A + 3A2 + A3 - 7A

= I + 3A + 3A + A2 . A - 7A

= I + 3A + 3A + A - 7A

= 7A - 7A + I

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.5 [Page 101]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.5 | Q 15 | Page 101

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| . 


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Select the correct option from the given alternatives:

Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If A is non singular, then |A| = 0


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


AB = AC ⇒ B = C for any three matrices of same order.


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


`root(3)(4663) + 349` = ? ÷ 21.003


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


A = `[a_(ij)]_(m xx n)` is a square matrix, if


The minimum number of zeros in an upper triangular matrix will be ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×