Advertisements
Advertisements
Question
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Solution
Here, B = `[(2, 1, 2),(1, 2, 4)]_(2 xx 3)` and A = `[(3, -4),(1, 1),(2, 0)]_(3 xx 2)`
∴ BA = `[(6 + 1 + 4, -8 + 1 + 0),(3 + 2 + 8, -4 + 2 + 0)]_(2 xx 2)`
⇒ BA = `[(11, -7),(13, -2)]`
L.H.S. (BA)2 = (BA) · (BA)
= `[(11, -7),(13, -2)][(11, -7),(13, -2)]`
⇒ `[(121 - 91, -77 + 14),(143 - 26, -91 + 4)]`
⇒ `[(30, -63),(117, -87)]`
R.H.S B2 = B · B
= `[(2, 1, 2),(1, 2, 4)]_(2 xx 3) * [(2, 1, 2),(1, 2, 4)]_(2 xx 3)`
Here, number of columns of first
i.e., 3 is not equal to the number of rows of second matrix i.e., 2.
So, B2 is not possible.
Similarly, A2 is also not possible.
Hence, (BA)2 · B2A2
APPEARS IN
RELATED QUESTIONS
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
AB = AC ⇒ B = C for any three matrices of same order.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0