English

The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither: [01+2ii-2-1-2i0-72-i70] - Mathematics and Statistics

Advertisements
Advertisements

Question

The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`

Sum

Solution

Let A = `[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`

∴ AT = `[(0, -1 - 2"i", 2 - "i"),(1 + 2"i", 0, 7),("i" - 2, -7, 0)]`

∴ AT = `-[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`

∴ AT = – A, i.e., A = –AT

∴ A is a skew-symmetric matrix.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.4 [Page 83]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Determinants and Matrices
Exercise 4.4 | Q 9. (iii) | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| . 


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Identify the following matrix is singular or non-singular?

`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`


Identify the following matrix is singular or non-singular?

`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


Select the correct option from the given alternatives:

Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


State whether the following statement is True or False:

If A is non singular, then |A| = 0


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


AB = AC ⇒ B = C for any three matrices of same order.


Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′? 


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If A is a square matrix, then A – A’ is a ____________.


For any square matrix A, AAT is a ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


If all the elements are zero, then matrix is said to be


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.


The minimum number of zeros in an upper triangular matrix will be ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×