Advertisements
Advertisements
Question
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
Solution
A2 – 5A + 7I = A.A − 5A + 7I
= `[(3, 1),(-1, 2)] [(3, 1),(-1, 2)] -5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`
= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`
= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`
= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)]`
= `[(0, 0),(0, 0)]`
= O
APPEARS IN
RELATED QUESTIONS
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
State whether the following statement is True or False:
If A is non singular, then |A| = 0
AB = AC ⇒ B = C for any three matrices of same order.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
If A is a square matrix, then A – A’ is a ____________.
For any square matrix A, AAT is a ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are