Advertisements
Advertisements
Question
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
Solution
`[(4,3),(x,5)] = [(y,z),(1,5)]`
As the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
x = 1, y = 4, and z = 3
APPEARS IN
RELATED QUESTIONS
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
Find the value of a, b, c, and d from the equation:
`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
If ЁЭТЩ = r cos θ and y= r sin θ prove that JJ-1=1.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
State whether the following statement is True or False:
If A is non singular, then |A| = 0
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
If two matrices A and B are of the same order, then 2A + B = B + 2A.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
For any square matrix A, AAT is a ____________.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
A matrix is said to be a column matrix if it has
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.